
Mining Attributed Graphs for Threat Intelligence

Hugo Gascon
Technische Universität

Braunschweig

Bernd Grobauer
Siemens AG

Thomas Schreck
Siemens AG

Lukas Rist
Symantec Corporation

Daniel Arp
Technische Universität

Braunschweig

Konrad Rieck
Technische Universität

Braunschweig

ABSTRACT
Understanding and fending off attack campaigns against organi-
zations, companies and individuals, has become a global struggle.
As today’s threat actors become more determined and organized,
isolated efforts to detect and reveal threats are no longer effective.
Although challenging, this situation can be significantly changed
if information about security incidents is collected, shared and an-
alyzed across organizations. To this end, different exchange data
formats such as STIX, CyBOX, or IODEF have been recently pro-
posed and numerous CERTs are adopting these threat intelligence
standards to share tactical and technical threat insights. However,
managing, analyzing and correlating the vast amount of data avail-
able from different sources to identify relevant attack patterns still
remains an open problem.

In this paper we present MANTIS, a platform for threat intelli-
gence that enables the unified analysis of different standards and the
correlation of threat data trough a novel type-agnostic similarity al-
gorithm based on attributed graphs. Its unified representation allows
the security analyst to discover similar and related threats by link-
ing patterns shared between seemingly unrelated attack campaigns
through queries of different complexity. We evaluate the perfor-
mance of MANTIS as an information retrieval system for threat
intelligence in different experiments. In an evaluation with over
14,000 CyBOX objects, the platform enables retrieving relevant
threat reports with a mean average precision of 80%, given only a
single object from an incident, such as a file or an HTTP request.
We further illustrate the performance of this analysis in two case
studies with the attack campaigns Stuxnet and Regin.

Keywords
Threat Intelligence; Advanced Persistent Threat; Graph Mining;
Information Retrieval

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CODASPY ’17, March 22–24, 2017, Scottsdale, AZ, USA.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4523-1/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/3029806.3029811

1. INTRODUCTION
Targeted attacks pose a serious threat to the security of individuals,

companies and organizations. In contrast to regular malware aiming
at widespread infections, these campaigns are tailored to maximize
the impact in the systems and networks of their victims. In many
occasions, such campaigns are conducted by experienced and even
government-sponsored actors that are specialized in industrial espi-
onage and invest considerable resources in the preparation of their
attacks. For example, according to the eye-opening investigation of
the security company Mandiant, a group of attackers code-named
“APT1” successfully infiltrated 141 companies over a period of 7
years and obtained access to several terabytes of company data [24].
The group was believed to include several developers and operators,
likely with the support of a nation-state actor. Since then, reports
about newly disclosed operations tailored against companies, gov-
ernments and individuals have become increasingly common in the
media [e.g. 32, 36, 37].

Unfortunately, the detection and analysis of attack campaigns is a
daunting task: First, due to the focused operation of the campaigns,
only few traces of the attackers are available for forensic investi-
gation. Second, the employed malware often makes use of novel
exploits and infiltration techniques. As a consequence, conventional
security defenses such as intrusion detection systems and anti-virus
scanners fail frequently to spot these type of threats. Specially
because detection patterns become available only with significant
delay, if at all. It has become evident then, that isolated efforts to
detect attack campaigns within companies and organizations are
mostly ineffective against organized threat actors.

As a remedy, security research has recently started to explore
means for collecting, sharing and analyzing threat information
across organizations—evidence-based knowledge referred to as
threat intelligence [e.g., 3, 11, 18, 27]. As part of this process,
different exchange formats have been proposed to provide a stan-
dardized way for describing security incidents, forensic traces and
observations related to attack campaigns. Examples of these formats
are STIX [1], IODEF [9] and OpenIOC [23], which are gradually
adopted by national and enterprise CERTs in combination with
commercial and open source databases for storing knowledge about
ongoing attacks such as Alien Vault’s Open Threat Exchange [28]
or the Collective Intelligence Framework [6].

However, collecting and sharing information alone is not suffi-
cient for mitigating the threat of attack campaigns. Although such
threat intelligence platforms enable searching for indicators of com-
promise that exactly match a query, the actual crux is to correlate
the vast amount of available data and pinpoint similar characteristics
of novel campaigns that can help eliminating existing infections as
well as craft detection patterns more efficiently.

http://dx.doi.org/10.1145/3029806.3029811

In this paper, we present MANTIS, an analysis platform that en-
ables the aggregation and correlation of threat data into a unified
representation based on attributed graphs. In particular, the plat-
form is able to merge information from different exchange formats,
solving the problem of analysing data contained in heterogeneous
or overlapping standards. Furthermore, different threat objects that
are typically analysed independently are correlated through a data
type-agnostic representation. Such an approach allows unveiling
high-level relations not visible within individual threat reports and
linking unconventional patterns shared between seemingly unrelated
attack campaigns.

At the core of our platform lies a novel graph-based similarity
algorithm that allows discovering similarities between threat data
objects at different levels of granularity. This analysis allows a
security analyst to search the attributed graphs for threats related to
individual observations—similar in spirit to a search engine. For ex-
ample, given an object from a security incident, such as a suspicious
file or an HTTP request, the platform can identify related nodes in
the graphs and traverse them to the corresponding threat reports, ulti-
mately returning information about the underlying attack campaign.
In addition, MANTIS supports authoring reports for new incidents
that can be used for searching and correlating existing information,
as well as extending existing threat data with new insights.

We evaluate the utility of MANTIS as an information retrieval
system for threat intelligence in a quantitative and qualitative fashion.
To this end, we make use of a large data set of malware observed in
the wild and collected by a security vendor at the end-point systems
of different companies and organizations. We base our evaluation
on the threat reports created during the analysis of such samples.

As a result, we show how given an object from a security incident,
our platform is able to retrieve associated data to the correspond-
ing malware with a mean average precision of 80% in a set of
14,000 standardized threat objects. This means that 4 out of 5 re-
sults returned to the security analyst are relevant to her query. We

further illustrate the performance of this analysis in two case studies
based on threat intelligence from highly targeted attack campaigns:
Stuxnet, the well-known joint endeavour of several west nations
to sabotage Iran's nuclear program and Regin, a sophisticated es-
pionage tool allegedly sponsored by a state-nation and distributed
worldwide to selected individuals and organizations.

To the best of our knowledge, MANTIS is the first practical solu-
tion for performing similarity-based analysis of multi-format and
structured data for threat intelligence. While the platform requires
the interplay with other techniques for stopping attack campaigns,
the analysis and query capabilities alone already provide a valuable
tool for assessing the impact of security incidents. MANTIS is avail-
able as an open-source project and is currently used at a large CERT
for managing threat data in day-to-day business.

In summary, we make the following contributions:

• Unified representation of threat intelligence reports. We
present an open-source platform for threat intelligence that
merges different standard exchange formats and provides a
unified representation of threat reports as attributed graphs.

• Similarity analysis of threats. We introduce a similarity algo-
rithm for attributed graphs that enables uncovering relations
between threats at different levels of granularity.

• Information retrieval for threat intelligence. By incorporating
the similarity analysis into our platform, we devise an infor-
mation retrieval system that is capable of retrieving related
reports given individual observations from security incidents.

The rest of the paper is organized as follows: we introduce the
concept of threat intelligence and its standards in Section 2. We then
proceed to present our system for analysis and retrieval of threat data
in Section 3. We evaluate its effectiveness with real-world threat
data in Section 5 and discuss its limitations in Section 6. Related
work is discussed in Section 7 and Section 8 concludes the paper.

1< s t i x : STIX_Package (. . .) i d =" package−37e ">
2< s t i x : STIX_Header>
3< s t i x : T i t l e >APT1< / s t i x : T i t l e >
4< s t i x : D e s c r i p t i o n >
5Th i s package c o n t a i n s t h e IOCs r e f e r e n c e d
6i n Appendix G of t h e APT1 r e p o r t .
7< / s t i x : D e s c r i p t i o n >
8< / s t i x : STIX_Header>
9< s t i x : O b s e r v a b l e s >
10<cybox : O b s e r v a b l e i d =" Obse rvab le−9ba ">
11<cybox : O b j e c t i d ="URI−9ba ">
12<cybox : P r o p e r t i e s t y p e ="URL">
13<URIObj : Value c o n d i t i o n =" c o n t a i n s ">
14/ mci . j p g
15< / URIObj : Value >
16< / cybox : P r o p e r t i e s >
17< / cybox : O b j e c t >
18< / cybox : O b s e r v a b l e >
19<cybox : O b s e r v a b l e i d =" Obse rvab le−2b2 ">
20<cybox : O b j e c t i d =" F i l e −2b2 ">
21<cybox : P r o p e r t i e s t y p e =" F i l e ">
22< F i l e O b j : Name>gdocs . exe < / F i l e O b j : Name>
23< F i l e O b j : E x t e n s i o n >exe < / F i l e O b j : E x t e n s i o n >
24< F i l e O b j : S i z e >261822< / F i l e O b j : S i z e >
25< F i l e O b j : A t t r i b u t e d _ L i s t >
26<cybox : O b j e c t c o n d i t i o n =" c o n t a i n s ">
27v1 . 0 No Doubt t o Hack You , Wr i t ed
28by U g l y G o r i l l a , 0 6 / 2 9 / 2 0 0 7
29< / cybox : O b j e c t >
30< / F i l e O b j : A t t r i b u t e d _ L i s t >
31< / cybox : P r o p e r t i e s >
32< / cybox : O b j e c t >
33< / cybox : O b s e r v a b l e >
34< / s t i x : O b s e r v a b l e s >

35< s t i x : I n d i c a t o r s >
36< s t i x : I n d i c a t o r i d =" I n d i c a t o r−a42 ">
37< i n d i c a t o r : T i t l e >
38MANITSME
39< / i n d i c a t o r : T i t l e >
40< i n d i c a t o r : D e s c r i p t i o n >
41Th i s f a m i l y o f malware w i l l beacon o u t a t
42random i n t e r v a l s t o t h e remote a t t a c k e r .
43The a t t a c k e r can run programs , e x e c u t e
44a r b i t r a r y commands , and e a s i l y up loa d and
45download f i l e s .
46< / i n d i c a t o r : D e s c r i p t i o n >
47< i n d i c a t o r : Type>Backdoor< / i n d i c a t o r : Type>
48< i n d i c a t o r : O b s e r v a b l e i d =" Obse rvab le−a42 ">
49<cybox : O b s e r v a b l e _ C o m p o s i t i o n o p e r a t o r ="OR">
50<cybox : O b s e r v a b l e i d r e f =" Obse rvab le−9ba ">
51< / cybox : O b s e r v a b l e >
52<cybox : O b s e r v a b l e i d r e f =" Obse rvab le−2b2 ">
53< / cybox : O b s e r v a b l e >
54< / cybox : O b s e r v a b l e _ C o m p o s i t i o n >
55< / i n d i c a t o r : O b s e r v a b l e >
56< i n d i c a t o r : Re la t ed_Campa igns >
57< i n d i c a t o r : Re la ted_Campaign >
58<stixCommon : Campaign i d r e f =" Campaign−a58 " / >
59< / i n d i c a t o r : Re la ted_Campaign >
60< / i n d i c a t o r : Re la t ed_Campa igns >
61< / s t i x : I n d i c a t o r >
62. . .
63. . .
64. . .
65. . .
66. . .
67< / s t i x : I n d i c a t o r s >
68< / s t i x : STIX_Package>

Figure 1: Exemplary STIX package for the “APT1” report by Mandiant [24]. Note that several identifiers and XML elements have been simplified for
presentation.

STIX

...

Similarity
Analysis

Similarity
analysis

Data
Import

Unified
Represe
ntation

Authoring of
reports

Searching &
retrieval

Import of
threat data

Unified
representation

Security
analyst

STIX

Threat
Intelligence

Feeds

Mantis Attributed graph

…

IODEF

CyBOX

Figure 2: Schematic overview of the MANTIS architecture.

2. THREAT INTELLIGENCE
Companies and organizations dealing with security-sensitive data

usually employ different security measures for protecting their in-
frastructure, including systematically monitoring network and host
events. While this monitored data can be searched for security
incidents on a regular basis, appropriate detection and search pat-
terns are only available for known threats, leaving infrastructure
vulnerable to novel and unknown attack campaigns. This situation,
however, can be significantly changed if information about incidents,
is collected, shared and analyzed across organizations. Although
this approach may not be sufficient for spotting extremely focused
attacks, it enables hunting down threat actors that re-use or gradually
evolve their techniques and strategies.

However, information regarding security incidents, related ob-
servations, and threat actors is very heterogeneous and difficult
to transmit without a lack of context. In order to overcome this
problem, different standard formats have been recently proposed to
provide a structured representation of threat data that can be easily
shared and processed. These standardised but diverse threat insights
constitutes what has been known as threat intelligence. Examples of
these standards are IODEF, developed by members of the IETF [9],
OpenIOC, implemented by Mandiant in many of its products [23],
and STIX with its associated family of formats, like CyBOX or
MAEC [1]. In particular, the STIX standard is currently leading
the adoption by national and enterprise CERTs. In the following,
we briefly cover its design as an illustrative example of the struc-
tured representations implemented by all of the mentioned threat
intelligence standards.

The STIX standard comprises a family of XML schemes whose
development is driven by the security community under supervision
of the MITRE Corporation. The individual STIX formats and con-
structs allow to describe numerous types of threat information in
a structured way and for different use cases. For example, obser-
vations related to threats can be described as Observables, ranging
from registry keys and file names to network addresses and strings in
URLs. These Observables can be combined with logical operators
to form Indicators that reflect and describe concrete threats. Other
constructs include representations for Incidents, Courses of Action,
Attack Campaigns and Threat Actors. A detailed description of the
different constructs is provided in the STIX specification [1].

As an example, let us consider the STIX package shown in Fig-
ure 1 which covers a tiny and simplified fragment of the indicators
for the “APT1” campaign. This campaign was uncovered in Febru-
ary 2013 and comprised a series of targeted attacks against several
companies and organizations [24]. Some common constructs of
the STIX standard can be seen in the example: An Observable

matching the content of a URI (line 10–18), another Observable
corresponding to a particular file (line 19–33), and an Indicator
combining the two (line 36–61) that describes the malware family
and references the underlying attack campaign. Note that although
not included here, the original report in OpenIOC format covers
over 3,000 Observables and 40 different Indicators for the attack
campaign.

The use of threat intelligence standards allows to share and pro-
cess a large amount of complex and enriched threat data in a standard
and machine readable format. This has encouraged some companies
with a large distributed infrastructure and a global view of the threat
landscape to aggregate feeds that are made available to smaller orga-
nizations. However, the information received through these sources
is highly heterogeneous and still needs to be put into context by the
analyst. In our work, we aim at making this analysis much more
efficient by providing a platform that integrates different standards
into a unified representation and allows for exploring and searching
structured threat data for relevant information.

3. THE MANTIS FRAMEWORK
As a first step for analyzing and understanding attack campaigns,

we present MANTIS, an analysis platform for storing, authoring
and managing threat data. The platform implements support for
several common threat intelligence standards, including STIX and
OpenIOC, two of the standards with the largest adoption in the
security community. To support this adoption and encourage further
research, MANTIS is available as an open-source project1 and readily
applicable for experimenting with threat data at organizations and
CERTs and the implementation of new importers for additional
standards.

To provide a flexible and platform-independent design, MANTIS
is structured as a set of Django applications. Figure 2 shows a
schematic view of its architecture. In the typical use case, the
security analyst documents the findings of an investigation using
the authoring interface, while at the same time accesses related
information about already documented threats through the retrieval
interface. Both interfaces provide different views for managing
the creation and the collaborative maintenance of threat reports.
Additionally, the platform supports receiving data feeds in different
formats from other tools, organizations and security companies.
The data contained in these feeds is jointly stored with authored
reports and thereby enables an analyst to document her findings in
the context of already known threats and attack campaigns.

3.1 Unified Data Model
To provide a joint view on the threat data collected, MANTIS

expresses the different XML standards as directed graphs and links
together constructs describing the same type of information.

Table 1: Example of flattened facts for an Observable.
Id Fact term (key) Fact value

f1 Properties/File_Name gdocs.exe
f2 Properties/File_Extension exe
f3 Properties/Size_In_Bytes 261822
f4 Properties/File_Attributed_List/Object@cond... Contains
f5 Properties/File_Attributed_List/Object v1.0 No Doub...

As a result, related data describing campaigns at different levels,
such as generic attack strategies and concrete malicious payloads,
are merged into a single view and can be accessed by simply travers-
ing the edges of the graphs.

1MANTIS— https://github.com/siemens/django-mantis

https://github.com/siemens/django-mantis

File: foo.exe Title: MANITSME

Description: ...

Composition: OR

URI: evil.com

Extension: exe

Title: APT1

Description: ...

File: gdocs.exe

Report

Indicator

Campaign

Title: MANITSME

Description: ...

Composition: OR

Observable
URI: /mci.jpg

Observable

Extension: exe

Observable

...

Title: APT1

Description: ...

Figure 3: Attributed graph for STIX package in Figure 1.

Formally, we define this directed graph as a tuple G = (V,E, L),
where each node v ∈ V symbolizes a standard construct from
an original XML document. Two nodes v, u ∈ V are connected
by a directed edge (v, u) ∈ E, if the construct corresponding to
u is either contained or referenced by the construct represented
by v. Moreover, we attach a list of facts l ∈ L to each node.
This enables us to store unstructured data in the graph, assigning
a set of attributes to each node. Each list l ∈ L has the form
l = (f1, f2, . . . , fn) where a fact fi results from flattening the
inner structure of a standard construct into facts of key-value pairs.

As an example of this unified representation, Figure 3 depicts the
attributed graph that abstracts the relations between objects and data
in the STIX report from Figure 1, including the two Observables,
their composition and the corresponding Indicator. Note how several
substructures have been flattened into facts, such as the title of the
report or the URI pattern.

In addition Table 1 shows the complete list of flattened facts for
the Observable at the center of Figure 3. Note that the flattening is
conducted recursively and the fact terms are built using a hierarchical
structure. This generic representation within the nodes of the graph
will let us compare effectively different threat reports and traverse
between objects even if their are of different type, such as from an
observed URI pattern to the corresponding attack campaign.

Each fact value in the platform is stored exactly once and refer-
enced from any object containing the fact. This de-duplication saves
storage space and, more importantly, enables an efficient calculation
of correlation based on fact equality. Thus, the analyst can retrieve
all nodes related to particular facts with a single query, for example
to get a listing of all executable files with a size of 261,822 bytes.
However, while equality-based searches already provide a powerful
instrument for mining the collected threat data, it is obvious that
more complex relations cannot be uncovered by focusing on exact
fact matching alone. In the following, we introduce our analysis
method, which as part of MANTIS allows the analyst to perform
similarity-based queries on top of its unified graph data model.

4. SIMILARITY ANALYSIS
When working with threat intelligence, a security analyst investi-

gating an incident begins by documenting any suspicious findings.
Then, the analyst wonders if such an event has been observed in
the past and, specially if relevant documentation about the incident
already exists.

However, obtaining an answer to this question is far from trivial.
Threat reports can be large and heterogeneous and contain data that,
without being identical, are linked to related events. For example,
consider the case of several Observables containing HTTP requests
of similar URLs. While being slightly different in the URI or host

name, such objects may be associated to the same threat actor and
thus should be retrievable to help investigating the new incident.

As a consequence, the analyst requires a method that can iden-
tify and retrieve similar objects regardless of their structure, size or
content given a query object. Thus, we strive for a similarity-based
search that is capable of identifying similar facts, nodes and sub-
graphs on top of the unified representation of MANTIS. In particular,
we implement our approach in two steps: First, we draw on our
unified representation and devise a method that enables non-exact
matching based on fingerprints computed using the simhash algo-
rithm (Section 4.1). Second, we implement a retrieval system to
efficiently identify all fingerprints similar to a given query (Sec-
tion 4.2).

4.1 Simhash Fingerprinting
To measure the similarity between arbitrary objects in our rep-

resentation, we make use of the bag-of-words concept from the
information retrieval field [30]. In its original form, this model is
intended for text documents in order to obtain a numerical vector
representation based on the words or phrases they contain. However,
threat data is heterogeneous and may range from simple file names
to code fragments and textual descriptions. Therefore, we employ
byte n-grams to characterize the content of an object [8, 40]. This
means that a fact f is represented by all byte strings of length n
contained in the fact value. Similarly, a node v is characterized by
all n-grams contained in its associated facts l and a subgraph rooted
at a node u is represented by the n-grams of all nodes reachable
from u.

While the extracted n-grams provide a versatile and generic rep-
resentation of the underlying content, they are not suitable for an
efficient analysis, as they require variable-size storage and cannot
be compared in constant time. For example, if new data introduced
into the platform contained previously unseen n-grams, the exist-
ing vector representation of the bag-of-n-grams model should be
recomputed for all objects to accommodate the new n-grams. As a
remedy, we employ the simhash algorithm introduced by Charikar
[5], an approximation technique that maps an arbitrary set of objects
to a fixed-bit fingerprint.

The simhash algorithm ensures that although each object is repre-
sented by a hash of its n-grams, similar objects have similar finger-
prints. More specifically, the design of the algorithm guarantees that
the Hamming distance [15] of fingerprints computed from similar
objects is small. This property allow us to articulate the problem of
finding a similar construct in MANTIS given an input query and its
fingerprint F as the problem of finding those fingerprints that differ
from F in at most b bits.

The algorithm proceeds as follows: First, each object is hashed
to an m-bit value. Second, the bits at each position i in the hash
values are counted, where a 1-bit is interpreted as +1 and 0-bit as
-1. Finally, the resulting m count values are converted into an m-bit
fingerprint by setting all positive counts to 1 and all negative counts
to 0. In our setting we apply the simhash algorithm to compute m-
bit fingerprints for the sets of n-grams associated with facts, nodes
and subgraphs, where we set n = 3 and m = 64. Accordingly, the
fingerprint Ff of a fact f is computed by

Ff = simhash(N(f))

where N is the set of n-grams contained in the fact value. Similarly,
we compute the fingerprint Fv of a node v as

Fv = simhash
(⋃
f∈l(v)

N(f)
)

where l(v) is the list of facts associated with v, and arrive at the
fingerprint Fg of a subgraph rooted at a node u by

Fg = simhash
(⋃
v∈r(u)

⋃
f∈l(v)

N(f)
)

where the auxiliary function r(u) returns all nodes reachable
from u. Figure 4 shows a complete example of this computation for
a fact containing the value /mci.jpg.

/mc
mci
ci.

i.j
.jp
jpg

Counting
of hash bits

11101
11111
10011 11100

10101
01000

Fingerprint
/mci.jpg

Fact

Extraction of
n-grams

Hashing
of n-grams

Construction of
Simhash

11101

+4 +2 +2 -2 +2

Figure 4: Computation of the simhash fingerprint of a fact.

The value is first represented by a set of 3-grams and then mapped
to a set of 5-bit hash values. These values are finally aggregated to
form the fingerprint Ff = 11101.

Note that n-grams are agnostic to the type of each fact, what
results in determining similarity at a lexical level. This means that,
in the same way as a search engine works, our method is not limited
to measuring the similarity between constructs of the same type (e.g.
two IP addresses), but between all possible types. This comparison
enables to find relations in cases where standards are incorrectly
filled or the types of data are unknown. For instance, a construct
including a fact that describes the name of a file can be matched to
a report including a description where this file is mentioned.

4.2 Hamming Distance-based Queries
When an large number of threat reports is loaded into the sys-

tem the number of constructs that need to be analyzed can rapidly
increase. For this reason, computing the Hamming distance be-
tween the query fingerprint and all queries in the platform can be
computationally expensive.

As a remedy and to avoid precomputing the distance between all
existing fingerprints at a maximum of b bits we follow the strategy
proposed by Manku et al. [25]. In their approach, an index contains
a series of buckets where each bucket has associated an integer p and
a permutation of bits π. Each bucket is filled by first applying its
permutation to all existing fingerprint and then sorting the resulting
set of permuted fingerprints. Given a query fingerprint F and an
integer b, we identify all permuted fingerprints in each bucket whose
top p bits match the top p bits of π(F). From these fingerprints,
the ones that differ at most k bits from π(F) are retrieved as result.
Such approach can be completed in O(p) and does not required the
computation of a large distance matrix of fingerprints. For discus-
sion on the optimal number of buckets and other implementation
details, we refer the reader to the original description of the indexing
approach introduced by Manku et al. [25].

For our particular application, we build three indexes: one for
the fingerprints of individual facts, a second one for the fingerprints
of nodes (i.e. individual constructs with their own semantics in
the threat intelligence standard) and a third one for the fingerprints
of subgraphs rooted at the different nodes. When a new report is
imported into the system we first represent its data as an attributed
graph. Then, we compute the fingerprints of its facts and constructs
and add them to the corresponding index. When the analyst queries
the system, the fingerprint of the query is computed and depending

of its type, the results obtained from the corresponding index are
retrieved. Moreover, retrieval results are sorted according to their
Hamming distance and therefore their predicted relevance. This
means that even in case that a query returns a large list of results,
the analyst can rapidly identify the most relevant entries and keep
conducting a focused investigation. In the following, we proceed to
evaluate the efficacy of our approach using real-world threat data.

5. EVALUATION
In this section we evaluate our method for similarity-based searches

through a quantitative and qualitative analysis. In particular, we
first explore the performance of the system responses when every
object and fact value is used as the input query introduced by the
analyst. Second, we evaluate the results provided by the system in
two specific scenarios. These involve threat data from the targeted
and, therefore, more elusive Stuxnet and Regin attack campaigns.

5.1 Data Set
We consider for our evaluation a dataset of STIX packages auto-

matically generated from malware samples collected in the wild by
a security vendor in June 2015 at the end-point systems of different
companies and organizations. The samples cover a wide range of
malicious activity, including common botnets, backdoors and attack
campaigns. Each sample is analyzed in a sandbox environment,
where the results of the underlying static and dynamic analysis are
automatically converted to CyBOX objects and grouped in STIX
packages.

Table 2: Raw dataset indexed by MANTIS.

Standard Construct Size
STIX STIX Package 2,621
STIX Observable 7,282
STIX Indicator 2,764
CybOX Observable 255,941
CybOX DNSQueryObject 2,583
CybOX FileObject 12,334
CybOX ProcessObject 17,914
CybOX SemaphoreObject 244
CybOX WinMutexObject 18,513
CybOX WinRegistryObject 186,990
CybOX WinThreadObject 22,347

Based on results provided by VirusTotal [39], we assign a label
to each STIX package according to the hash of the analysed binary.
As the names assigned to different malware families by AV vendors
vary, we use a majority voting strategy and select those reports with
a consensus of more than 5 vendors. The resulting 2,621 STIX
reports are then loaded into MANTIS for analysis. Table 2 contains
a summary of the constructs present in the original data.

Moreover, we take into considerations certain characteristics of
the data that are relevant for the analysis: First, we exclude all
objects and facts that are unsuitable for a similarity search, such as
local timestamps, identifiers and hash sums, reducing the size of
the attributed graphs to 14,987 individual nodes. Note that although
these types of objects are not included to evaluate the algorithm,
they are still in the system and are thus, searchable. Second, if
several objects in one or several STIX reports contain the same
value, the importer stores this value only once in MANTIS. As a
result, nodes in the unified representation contain only references to
their values, saving storage space if a certain value occurs more than
once. The de-duplication performed by our platform, results in a
total of 46,015 unique facts being stored in the system for similarity
analysis.

5.2 Quantitative Evaluation
From the perspective of the security analyst, our platform resem-

bles the operation of an information retrieval system: an analyst
enters a query and retrieves a list of relevant nodes from the at-
tributed graphs. So in essence, MANTIS functions like a search
engine and its performance will be as good as the relevance of the
results retrieved. Accordingly, in order to evaluate its performance
qualitatively we make use of a metric that is widely employed to
assess the performance of search algorithms: the mean average pre-
cision (MAP) [26]. The MAP averages the precision of a retrieval
system over a set of queries Q for different numbers k of retrieved
results. Formally, it is defined as

MAP(Q) =
1

|Q|

|Q|∑
j=1

1

mj

mj∑
k=1

Precision(Rjk),

where Q is the set of queries, mj the number of relevant nodes to
the query qj ∈ Q and Rjk the top retrieved nodes for the query qj
up to the k-th relevant node. Moreover, we consider a node to be
relevant, if it is associated with the same AV label as the object used
as the query. For a single query, the average precision is the mean
of the precision values obtained for the set of top k documents. This
average value is then averaged over all possible queries [26], in our
case all available facts, nodes or subgraphs.

To understand the intuition behind this metric we consider again
the example of a search engine. The performance of a query is
better when more relevant results are returned on the first page of
the search engine, that is, we get a high precision value for the top k
results [26]. Furthermore, the MAP score can be interpreted as the
percentage of relevant objects in the returned results. For example,
a MAP of 75% implies that 3 out of 4 returned results are relevant
to the query.

We compute the MAP for our analysis platform MANTIS by
considering all facts, all nodes or all subgraphs reachable from a
node as queries to the system. To gain further insights into the
similarity analysis, we repeat the queries with different number of
retrieved objects k and different numbers of bits to match between
the fingerprints. The results of this experiment are presented in
Figure 5, where the MAP is plotted for the different experimental
setups. We note that the quality of the returned results depends
on the complexity of the query. If subgraphs are used as query,
MANTIS is able to achieve a MAP value of 80%, such that 4 out of
5 returned results are relevant and constitute similar threats. If the
analyst enters only a node or a fact as query, the MAP decreases.
However, even when entering only single facts, our platform attains
a MAP of at least 50%, thus providing retrieval results where every
second result matters. Moreover, our platform reaches a good MAP
already at 15 retrieved items (Figure 5b) which is a reasonable
amount of information to display on the first results page of the
search interface.

0 10 20 30 40 50 60
Max. Hash Distance (bits)

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

 (k
 =

 2
0)

Subgraph
Node
Fact

(a) MAP vs. maximum Hamming
distance between fingerprints.

0 10 20 30 40 50
Max. Retrieved Nodes (k)

0.55

0.60

0.65

0.70

0.75

0.80

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Subgraph (b=12)
Node (b=17)
Fact (b=25)

(b) MAP vs. maximum number of
retrieved results.

Figure 5: Mean average precision (MAP) for queries of different complexity.

vi
rlo

ck
al

la
pl

e
ra

m
ni

t
sy

m
m

i
vo

bf
us

m
ad

an
ge

l
lo

ad
m

on
ey

au
to

it
ou

tb
ro

w
se

ne
sh

ta
m

or
st

ar
el

ke
rn

al
m

an
ex

pi
ro

sw
ift

br
ow

se
eo

re
zo

Malware Family

100

101

102

103

104

C
on

st
ru

ct
s

in
 d

at
as

et

Nodes
Facts

101

102

103

104

105

Fa
ct

s
in

 d
at

as
et

(a) Total number of constructs and
facts per family.

vi
rlo

ck
al

la
pl

e
ra

m
ni

t
sy

m
m

i
vo

bf
us

m
ad

an
ge

l
lo

ad
m

on
ey

au
to

it
ou

tb
ro

w
se

ne
sh

ta
m

or
st

ar
el

ke
rn

al
m

an
ex

pi
ro

sw
ift

br
ow

se
eo

re
zo

Malware Family

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Av

er
ag

e
Pr

ec
is

io
n

(k
 =

 2
0)

Subgraph (b=12)
Node (b=17)
Fact (b=25)

(b) MAP for each family with best b
and k = 20.

Figure 6: Data distribution and mean average precision per malware family.

0 20 40 60 80 100
STIX Reports

0e+00

5e+04

1e+05

2e+05

2e+05

N
od

es

0e+00

5e+04

1e+05

2e+05

2e+05

2e+05

3e+05

F
ac

ts

Nodes
Facts

(a) Number of constructs and facts
created per number of STIX reports
imported in MANTIS.

0 500 1000 1500 2000
n-gram size

0.000

0.005

0.010

0.015

0.020

0.025

S
im

ha
sh

 C
om

pu
ta

tio
n

Ti
m

e
(s

)

Subgraph
Node
Fact

(b) Computation Time of the
Simhash Fingerprint vs. the number
of n-grams in the object.

Figure 7: Scalability measurements respect to data size and fingerprint
computation time.

As our dataset comprises a wide range of malware samples, we
study how the diversity in the data affects the performance. Some
samples, for instance, originate from small attack campaigns, while
others are part of more common botnet and phishing activity. We
evaluate then the results returned by the system when the queries
belong to individual malware families. Figure 6a shows the amount
of nodes and facts in each of the families. Note the logarithmic
scale, that indicates a skewed distribution of samples per type of
malware. Nonetheless and as shown in Figure 6b, the unbalance
distribution has only a limited effect on the performance of our
approach. Individual facts are retrieved with a MAP above 50% for
most of the malware families, that is, every second returned result
corresponds to the same malware family as the query. This is a
remarkable result given that only individual facts, such as file names
or URLs, are used to query the system.

Finally, scalability is another concern when designing an informa-
tion retrieval system that is intended to accommodate large amounts
of data. Figure 7a shows the evolution of the number of nodes and
facts that need to be stored in the system per number of STIX reports
imported. In both cases, a linear relation exist. As a result, we can
expect our fingerprint indexes to also grow linearly with the number
of imported reports. Moreover, every time the analyst introduces an
individual fact or several facts as part of a construct, the fingerprint
for each of them needs to be computed. As mentioned in Section 4.2,
finding matching fingerprints for a query fingerprint F can be com-
pleted in O(p), but the time computation of the fingerprint for the
query object is directly related to its size. Figure 7b shows how
even for large subgraphs with more than 2000 n-grams, the simhash
fingerprint can be computed in less than 20 milliseconds with a
linear dependency to the number of n-grams.

5.3 Qualitative Evaluation
To evaluate our approach qualitatively, we consider a small set of

STIX packages from the Stuxnet and Regin attack campaigns. Such
highly targeted APTs are characterized by disparate indicators of
compromise and are typically very elusive to identify. Stuxnet, for

instance, which was initially discovered in 2010, is a sophisticated
malware developed by west state-nations in order to sabotage the
nuclear program of Iran. After remaining undetected for some time,
its uncontrolled propagation through several attack vectors led to
the identification of different variants in systems worldwide [22, 34].
The Regin trojan, on the other hand, is an advanced espionage tool
that was used to surveil several companies and government entities
including the European Council. Due to its stealth techniques,
different variants of the malware remained unnoticed for several
years until their discovery in 2011 [19, 35].

Thus, we evaluate the performance of our method when the ana-
lyst tries to retrieve such indicators from among more generic threat
data. After loading a set of 31 and 10 STIX reports of the Stuxnet
and Regin campaigns, respectively, we measure the mean average
precision of the results when objects from these campaigns are used
as queries. Additionally, we compare our method with the perfor-
mance of searches based on exact fact matchings, as this type of
retrieval strategy is the default approach used in threat intelligence
engines and standard databases.

Table 3 shows the number of APT reports and objects loaded
into the system in relation to the total number of objects present in
the platform. Thus, in Figure 8, each column indicates the MAP
over all queries when similarity is measured through a specific type
of object hash. The objects from the Stuxnet APT are retrieved
with a MAP over 85% for subgraph-, node- and fact-based queries,
while in the case of the Regin APT, fact-based queries allow to
retrieve correct results with a MAP of 79%. Unlike in the previous
case, the complexity of larger queries like subgraphs and nodes,
do not compensate in average for the small numbers of objects
present in the database, making simpler fact queries more effective.
Furthermore and as shown by the baseline performance, queries
based on the similarity of objects in attributed graphs offer a more
effective alternative than generic searches based on exact matchings
of facts.

Stuxnet
Regin

APT Malware Family

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

 (k
 =

 2
0)

Subgraph
Node
Fact
Baseline

Stuxnet Regin Total in
Database

STIX Reports 31 10 2,662
Subgraphs 1,052 132 20,692
Nodes 557 76 15,620
Facts 4,785 1,395 52,195

Figure 8 & Table 3: MAP for query objects of APT families and comparison
with baseline performance of standard search engines based on exact strings
matching. Raw APT dataset indexed by MANTIS.

6. LIMITATIONS
The previous evaluation demonstrates the efficacy of MANTIS

and our method to provide relevant similarity-based results for threat
data queries. However, there exist certain limitations.

First, search results are always bounded to the data present in
the system when a query is issued so an object cannot be retrieved
if it has not been imported. Although an inherent limitation of
every threat intelligence platform, this can be a disadvantage if
an actor executes a highly targeted attack. In such a situation, it
is likely that the attack will not be documented and become part
of a repository or feed of threat data. For such events where no
correlation is possible, reactive solutions like intrusion detection or
behavioral analysis can be more effective to prevent and thwart the
attack. Second, as other systems that aim at analyzing threat data,

MANTIS is also subject to possible evasion attacks. For instance, an
actor targeting an organization could use several types of attacks as
part of a unique but large campaign. If such attacks are chosen to be
different enough, it is possible that the events can not be linked to
each other through our similarity analysis, even if each one of them
is well documented. Finally, our method compares n-grams and
therefore determines similarity at a lexical level. This can lead to
false positives when unrelated objects share certain n-grams. Yet, as
described in Section 4.1, this type of feature representation enables
to correlate heterogeneous data even when the standard is used
incorrectly or the type of the data is unknown like, for example, in
the case of binary strings that are part of indicators of compromise.

7. RELATED WORK
The body of work addressing threat intelligence issues has seen

a surge in recent years thanks to the development of new sharing
formats. Interestingly however, almost no previous work has been
concerned with unifying and comparing the data described through
different standards, as we do in this paper. Yet, some active and
relevant areas exist that explore related research questions:

Threat intelligence. As discussed by Barnum [1], the commu-
nity effort to design and extend the STIX format constitutes the
most relevant and recent work to define a language that can add
context and represent threat information in a structured and holistic
way. Being this a recent development, current academic research is
yet trying to understand the ecosystem of threat intelligence data by
creating taxonomies and models [3]. Most researchers recognize the
benefits of these technologies but their focus still lies on the design
and implementation of efficient sharing systems [20, 31, 33] and
the privacy implications resulting from distributing sensitive secu-
rity data across heterogeneous organizations [10, 16]. Moreover,
practitioners acknowledge the potential improvements for situa-
tional awareness [11, 27] that comes from the sharing, storage and
analysis of threat data but also the difficulty to ensure consistent
interpretation without the need of the analyst. Kampanakis [18],
for example, presents an analysis of all the standards under current
development and points to the underestimated challenge of data
collection and automatic analysis. This is the exactly the field of
operation of MANTIS. Most approaches in this direction stem from
non-academic initiatives and are being developed both by the secu-
rity community and by vendors like Microsoft [13], which holds
large amounts of security data from its customers. For instance, the
open-source framework CRITS [7] presents some resemblance to
MANTIS. In particular, bucket lists and relationships can be assigned
to top level objects in order to identify campaigns and attributions.
However, these assignments need to be done manually by the analyst
whereas finding such correlations and matchings automatically is
precisely the main goal of our method. Finally, Woods et al. [41]
have recently proposed a system to infer similarity relationships and
functional clusters of indicators using information about reporting
patterns. Although close to our work in its goal and methodology,
their approach relies on data not based on standardized open formats.

Information retrieval for security. Tangential to our research
is the field of information retrieval which covers a huge body of
previous research and work. For brevity, we herein consider only
previous research which like ours, makes use of information re-
trieval and data mining techniques for solving security problems. In
particular, there exist several authors that deal with the question of
how to efficiently detect and analyze new malware variants which
have been submitted to application stores or analysis platforms by
analyzing the output reports of their dynamic and static analysis
[e.g., 2, 4, 14, 17]. For example, Graziano et al. [14] make use of
ssdeep fuzzy hashes and code-based features to cluster malware

binaries and identify new families. Although this approach also tries
to identify similar strains of malware their scope is limited to types
of malware, where our broader view allow us to pinpoint discon-
nected elements from the same campaign. Closer to our method is
the work introduced in [12], which also aims at finding similarities
between graphs, in this case, call graphs extracted from malware
samples. Our method, however, differs in that we are not inspecting
simple instances of malware, but instead model a global picture of
the reported threat data. Another line of security research that has
combined information retrieval techniques and analysis of structured
data focuses on the identification of similar segments in code of
large software projects [21, 29, 38]. In particular, Uddin et al. [38]
demonstrate that the simhash algorithm can help detecting similar
code regions. While different in scope to our method, their approach
also proves the effectiveness of Charikar’s algorithm as the basis
to implement techniques that can identify similar entities in large
repositories of data.

8. CONCLUSION
In this paper we present MANTIS, a system that enables the author-

ing, collection and, most importantly, the analysis and correlation
of threat intelligence data. To the best of our knowledge, MANTIS
is the first open-source platform to provide a unified representation
of threat data constructs from different standards that allows for
assessing the similarity between heterogeneous reports at different
levels of granularity regardless of their content, size or structure.
The security analyst can initiate a search for similar constructs to a
related incident with a query that goes from a simple string to a full
report describing a multi-faceted attack.

We evaluate the performance of MANTIS in a series of experi-
ments where given a security incident with a malware family, the
similarity search integrated in MANTIS allows to retrieve related ob-
jects with a mean average precision of over 80%. That is, 4 out of 5
returned results correspond to the same malware family as the query.
Finally and based on data from the attack and espionage campaigns
Stuxnet and Regin, we show how MANTIS can be effectively used
to assist the security analyst in the investigation of highly targeted
security incidents.

References
[1] S. Barnum. Standardizing cyber threat intelligence information with the struc-

tured threat information expression (STIX). Technical report, MITRE Corpora-
tion, 2014.

[2] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda. Scalable,
behavior-based malware clustering. In Proc. of Network and Distributed System
Security Symposium (NDSS), 2009.

[3] E. W. Burger, M. D. Goodman, P. Kampanakis, and K. A. Zhu. Taxonomy model
for cyber threat intelligence information exchange technologies. In Proceedings
of the 2014 ACM Workshop on Information Sharing & Collaborative Security,
pages 51–60. ACM, 2014.

[4] S. Chakradeo, B. Reaves, P. Traynor, and W. Enck. Mast: Triage for market-
scale mobile malware analysis. In Proc. of ACM Conference on Security and
Privacy in Wireless and Mobile Networks (WISEC), 2013.

[5] M. S. Charikar. Similarity estimation techniques from rounding algorithms. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing,
pages 380–388. ACM, 2002.

[6] CIF. Collective intelligence framework. http://csirtgadgets.org/
collective-intelligence-framework, visited August, 2016.

[7] CRITS. Collaborative research into threats.
http://crits.github.io, visited July, 2016.

[8] M. Damashek. Gauging similarity with n-grams: Language-independent cate-
gorization of text. Science, 267(5199):843–848, 1995.

[9] R. Danyliw, J. Meijer, and Y. Demchenko. The incident object description ex-
change format (IODEF). Technical report, IETF RFC 5070, 2007.

[10] G. Fisk, C. Ardi, N. Pickett, J. Heidemann, M. Fisk, and C. Papadopoulos. Pri-
vacy principles for sharing cyber security data. In Proceedings of the IEEE In-
ternational Workshop on Privacy Engineering, May 2015.

[11] P. Fonash. Using automated cyber threat exchange to turn the tide against ddos.
http://rsaconference.com, 2014.

[12] H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck. Structural detection of android
malware using embedded call graphs. In Proceedings of the 2013 ACM workshop
on Artificial intelligence and security, pages 45–54. ACM, 2013.

[13] C. Goodwin, J. P. Nicholas, J. Bryant, K. Ciglic, A. Kleiner, C. Kutterer, A. Mas-
sagli, A. Mckay, P. Mckitrick, J. Neutze, T. Storch, and K. Sullivan. A frame-
work for cybersecurity information sharing and risk reduction. Technical report,
Microsoft Corporation, 2015.

[14] M. Graziano, D. Canali, L. Bilge, A. Lanzi, and D. Balzarotti. Needles in a
haystack: Mining information from public dynamic analysis sandboxes for mal-
ware intelligence. In USENIX, 2015.

[15] R. W. Hamming. Error-detecting and error-correcting codes. Bell System Tech-
nical Journal, 29(2):147–160, 1950.

[16] J. L. Hernandez-Ardieta, J. E. Tapiador, and G. Suarez-Tangil. Information shar-
ing models for cooperative cyber defence. In Cyber Conflict (CyCon), 2013 5th
International Conference on, pages 1–28. IEEE, 2013.

[17] J. Jang, D. Brumley, and S. Venkataraman. Bitshred: feature hashing malware for
scalable triage and semantic analysis. In Proc. of ACM Conference on Computer
and Communications Security (CCS), pages 309–320, 2011.

[18] P. Kampanakis. Security automation and threat information-sharing options. Se-
curity & Privacy, IEEE, 12(5):42–51, 2014.

[19] Kaspersky. The Regin Platform: Nation-State Ownage of GSM Networks.
Kaspersky Lab, November 2014.

[20] M. Korczynski, A. Hamieh, J. H. Huh, H. Holm, S. R. Rajagopalan, and N. H.
Fefferman. DIAMoND: Distributed intrusion/anomaly monitoring for nonpara-
metric detection. In Proceedings the 24th International Conference on Computer
Communications and Networks, pages 1–8, 2015.

[21] J. Krinke. Identifying similar code with program dependence graphs. In Pro-
ceedings of the Eighth Working Conference on Reverse Engineering (WCRE’01),
2001.

[22] R. Langner. Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security and
Privacy, 9(3), May 2011.

[23] Mandiant. Sophisticated indicators for the modern threat landscape: An intro-
duction to OpenIOC. Technical report, Mandiant Whitepaper, 2013.

[24] Mandiant. APT1: Exposing one of China’s cyber espionage units. Technical
report, Mandiant Intelligence Center, 2013.

[25] G. S. Manku, A. Jain, and A. Das Sarma. Detecting near-duplicates for web
crawling. In Proceedings of the 16th international conference on World Wide
Web, pages 141–150. ACM, 2007.

[26] C. D. Manning, P. Raghavan, H. Schütze, et al. Introduction to information
retrieval, volume 1. Cambridge university press Cambridge, 2008.

[27] M. Orlando. Threat intelligence is dead. long live threat intelligence! http:
//rsaconference.com, 2015.

[28] OTX. Open threat exchange. https://www.alienvault.com/open-threat-exchange,
visited August, 2016.

[29] A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su. Detecting code
clones in binary executables. In Proceedings of the Eighteenth International
Symposium on Software Testing and Analysis, 2009.

[30] G. Salton, A. Wong, and C. Yang. A vector space model for automatic indexing.
Communications of the ACM, 18(11):613–620, 1975.

[31] O. Serrano, L. Dandurand, and S. Brown. On the design of a cyber security data
sharing system. In Proceedings of the ACM Workshop on Information Sharing
& Collaborative Security, pages 61–69. ACM, 2014.

[32] Spamfighter/Der Spiegel. Top german official in-
fected by regin malware. http://www.spamfighter.com/
News-19917-Top-German-Official-Infected-by-Regin-Malware.htm, visited
August, 2016.

[33] J. Steinberger, A. Sperotto, M. Golling, and H. Baier. How to exchange security
events? overview and evaluation of formats and protocols. In Integrated Network
Management (IM), 2015 IFIP/IEEE International Symposium on, pages 261–
269. IEEE, 2015.

[34] Symantec. Stuxnet 0.5: The Missing Link. Symantec Security Response, Febru-
ary 2013.

[35] Symantec. Regin: Top-tier espionage tool enables stealthy surveillance. Syman-
tec Security Response, August 2015.

[36] The Guardian. Uk company’s spyware used against bahrain activist. https://www.
theguardian.com/world/2013/may/12/uk-company-spyware-bahrain-claim, vis-
ited August, 2016.

[37] The New York Times. Computer systems used by clinton campaign are said
to be hacked, apparently by russians. http://www.nytimes.com/2016/07/30/us/
politics/clinton-campaign-hacked-russians.html, visited August, 2016.

[38] M. S. Uddin, C. K. Roy, K. A. Schneider, and A. Hindle. On the effectiveness
of simhash for detecting near-miss clones in large scale software systems. In
WCRE, 2011.

[39] VirusTotal. https://www.virustotal.com/.
[40] K. Wang, J. Parekh, and S. Stolfo. Anagram: A content anomaly detector resis-

tant to mimicry attack. In Recent Adances in Intrusion Detection (RAID), pages
226–248, 2006.

[41] B. Woods, S. Perl, and B. Lindauer. Data mining for efficient collaborative
information discovery categories and subject descriptors. In Proceedings of the
2nd ACM Workshop on Information Sharing and Collaborative Security. ACM,
2015.

http://csirtgadgets.org/collective-intelligence-framework
http://csirtgadgets.org/collective-intelligence-framework
http://crits.github.io
http://rsaconference.com
http://rsaconference.com
http://rsaconference.com
https://www.alienvault.com/open-threat-exchange
http://www.spamfighter.com/News-19917-Top-German-Official-Infected-by-Regin-Malware.htm
http://www.spamfighter.com/News-19917-Top-German-Official-Infected-by-Regin-Malware.htm
https://www.theguardian.com/world/2013/may/12/uk-company-spyware-bahrain-claim
https://www.theguardian.com/world/2013/may/12/uk-company-spyware-bahrain-claim
http://www.nytimes.com/2016/07/30/us/politics/clinton-campaign-hacked-russians.html
http://www.nytimes.com/2016/07/30/us/politics/clinton-campaign-hacked-russians.html
https://www.virustotal.com/

	Introduction
	Threat Intelligence
	The MANTIS Framework
	Unified Data Model

	Similarity Analysis
	Simhash Fingerprinting
	Hamming Distance-based Queries

	Evaluation
	Data Set
	Quantitative Evaluation
	Qualitative Evaluation

	Limitations
	Related Work
	Conclusion

